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Summary: Unconstrained Plastering is a new algorithm with the goal of generating a con-
formal all-hexahedral mesh on any solid geometry assembly. Paving[1] has proven reliable
for quadrilateral meshing on arbitrary surfaces.  However, the 3D corollary, Plastering
[2][3][4][5], is unable to resolve the unmeshed center voids due to being over-constrained
by a pre-existing boundary mesh.  Unconstrained Plastering attempts to leverage the bene-
fits of Paving and Plastering, without the over-constrained nature of Plastering. Uncon-
strained Plastering uses advancing fronts to inwardly project unconstrained hexahedral lay-
ers from an unmeshed boundary.  Only when three layers cross, is a hex element formed. 
Resolving the final voids is easier since closely spaced, randomly oriented quadrilaterals do 
not over-constrain the problem.  Implementation has begun on Unconstrained Plastering,
however, proof of its reliability is still forthcoming.
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1 Introduction 

The search for a reliable all-hexahedral meshing algorithm continues. Many researchers
have abandoned the search, relying upon the widely available and highly robust tetrahedral
meshing algorithms [6].  However, hex meshes are still preferable for many applications,
and depending on the solver, still required.  This paper introduces a new method for hexa-
hedral mesh generation called Unconstrained Plastering.

1.1 Previous Research 

For all-quadrilateral meshing, Paving [1] and its many permutations [7][8] have proven re-
liable.  Paving starts with pre-meshed boundary edges which are classified into fronts and
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advanced inward.  As fronts collide, they are seamed, smoothed, and transitioned until only
a small unmeshed void remains (usually 6-sided or smaller).  Then a template is inserted
into this void resulting in quadrilaterals covering the entire surface. 

Paving’s characteristic of maintaining high quality, boundary-aligned rows of elements is 
what has made it a successful approach to quad meshing.  In addition, because of its ability 
to transition in element size, Paving is able to match nearly any boundary edge mesh. 

There have been many attempts to extend Paving to arbitrary 3D solid geometry. While
valuable contributions to the literature, these attempts have not resulted in reliable general
algorithms for hexahedral meshing. Plastering [2][3][4][5] was one of the first attempts.  In 
Plastering, the bounding surfaces of the solid are quad meshed, fronts are determined and
then advanced inward.  However, once opposing fronts collide, the algorithm frequently has 
deficiencies.  Unless the number, size, and orientation of the quadrilateral faces on oppos-
ing fronts match, Plastering is rarely able to resolve the unmeshed voids. 

Many creative attempts have been made to resolve this unmeshed void left behind by plas-
tering.  Since arbitrary 3D voids can be robustly filled with tets, the idea of plastering in a
few layers, followed by tet-meshing the remaining void was attempted [9][10].  Transitions 
between the tets and hexes were done with Pyramids [11] and multi-point constraints.  The 
Geode-Template [12] provided a method of generating an all-hex mesh by refining both the 
hexes and tets. However, this required an additional refinement of the entire mesh resulting
in meshes much larger than required.  In addition, the Geode-Template was unable to pro-
vide reasonable element quality. 

A draw-back of paving is the need for expensive intersection calculations.  An alternative to
Paving called Q-Morph [7] eliminated the need for intersection calculations by first triangle 
meshing the surface. This triangle mesh is then “transformed” into a quad mesh.  Using a 
similar advancing front technique to paving, triangles are locally reconnected, repositioned, 
and combined to form quads.  Q-Morph is able to form high-quality quadrilateral elements
with similar characteristics to paving.  Q-Morph has proven to be a robust and reliable quad
meshing algorithm in common use in several commercial meshing packages. 

An attempt at extending Q-Morph to a hex-dominant meshing algorithm was done with H-
Morph [13].  This algorithm takes an existing tetrahedral mesh and applies local connec-
tivity transformations to the elements.  Groups of tetrahedral are then combined to form 
high-quality hexahedra.  The advancing front approach was also used for ordering and pri-
oritizing tetrahedral transformations.  Although H-Morph had the desirable characteristics
of regular layers near the boundaries, it was unable to reliably resolve the interior regions to
form a completely all-hex mesh since it also attempted to honor a pre-meshed quad bound-
ary.

Recognizing the difficulty of defining the full connectivity of a hex mesh using traditional
geometry-based advancing front approaches, the Whisker-Weaving algorithm [14][15][16] 
attempted to address the problem from a purely topological approach.  It attempts to first 
generate the complete dual of the mesh, from which the primal, or hex elements, are readily
obtainable. Although wisker-weaving can in most cases generate a successful dual topol-
ogy, resulting hex elements are often poorly shaped or inverted. 

Plastering, H-Morph, Whisker Weaving and all of their permutations are classified as Out-
side-In-Methods.  They start with a pre-defined boundary quad mesh and then attempt to
use that to define the hex connectivity on the inside.  Another class of Hex meshing algo-
rithms can be classified as Inside-Out methods [17][18][19].  These algorithms fill the in-
side of the solid with elements first, often using an octree-based grid.  This grid is then 



Unconstrained Paving & Plastering       401

adapted to fit the boundary.  These methods place high quality elements on the interior of 
the volume, however, they typically generate extremely poor quality elements on the
boundary.  In addition, traditional Inside-Out methods are unable to mesh assemblies with 
conformal meshes.  These inside-out methods seem particularly popular with the metal 
forming industry, but of less appeal in structural mechanics applications.

Sweeping based methods [20][21][22] are among the most widely used hexahedral based
meshing algorithms in industry today.  Sweeping, however, applies only to solids which are
2.5D, or solids which can be decomposed into 2.5D sub-regions.  There has been a consid-
erable amount of research in sweeping and many successful implementations have been
published.  It is typically quite simple to decompose and sweep simple to medium complex-
ity solids.  However, as more complexity is added to the solid model, the task of decompos-
ing the solids into 2.5D sub-regions can be daunting, and in some regards, an art-form re-
quiring significant creativity and experience.

Advancing front methods have proven ideal for triangle, quadrilateral and even tetrahedral
meshes. They have been successful in these arenas because of the smaller number of con-
straints imposed by the connectivity of these simple element shapes.  Hexahedral meshes, 
on the other hand, must maintain a connectivity of eight nodes, 12 edges, and six faces per
element, with strict constraints on warping and skewness. As a result, unlike tetrahedral 
meshes, minor local changes to the connectivity of a hex mesh can have severe conse-
quences to the global mesh structure.  For this reason, current hexahedral advancing front
methods where the boundary is prescribed apriori have rarely succeeded for general geo-
metric configurations.

Current advancing front methods, while having the high ideal of maintaining the integrity 
of a prescribed boundary mesh, frequently fail because the very boundary mesh they are at-
tempting to maintain over-constrains the problem, creating a predicament which can be in-
tractable. 

To resolve this issue, we introduce a new concept, known as Unconstrained Plastering.
With this approach, we relax the constraint of prescribing a boundary apriori quad mesh.
While still maintaining the desirable characteristics of advancing front meshes, Uncon-
strained Plastering is free to define the topology of its boundary mesh as a consequence of
the interior meshing process.  It is understood that not prescribing an apriori boundary quad
mesh can have implications on the traditional bottom-up approach to mesh generation.
These implications, however, are significantly outweighed by the prospect of automating
the all-hex mesh generation process through a more top-down approach to the problem that 
Unconstrained Plastering offers.

1.2 Unconstrained Plastering, an Unproven Concept 

Unconstrained Plastering is a new approach that is unique from all the others.  Although it 
contains similarities to other existing algorithms, primarily Plastering, it should not be con-
sidered an extension of Plastering.

Finally, Unconstrained Plastering is not a finished work. Rather, Unconstrained Plastering
is an idea that holds promise for hex meshing researchers and should be studied further. 
Implementation has begun on a prototype and there is reason to be optimistic that it has a
greater potential for success than others.  However, evidence of it being robust enough to 
handle general purpose mesh generation for industrial applications is forthcoming. 
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2 Unconstrained Paving

To best understand the general concept behind Unconstrained Plastering, we first examine
the 2D corollary, Unconstrained Paving. 

2.1 Advancing Unconstrained Rows

Fig. 1 shows a geometric surface ready for quad meshing.  If we were to pave this surface, 
we would first mesh each of the surfaces boundary curves, after which we would advance a 
row of quads along one of the boundary curves as can be seen in Fig. 2.  In this case four 
quads were added because the curve along which the row was paved was pre-meshed with
four mesh edges.

If, instead, the surface was being meshed with Unconstrained Paving, the boundary curves
would not be pre-meshed with edges. Advancing, or paving, an unconstrained row would
result in Fig. 3.  In this case a row of quads have been inserted, however, we do not know
how many quads will be in that row.  The number of quads in this row is determined as ad-
jacent rows cross it. Fig. 4 shows what the mesh looks like after a second row is advanced.
Since the second row advanced crossed the first row advanced, a single quad is formed
(shaded) in the corner where the two rows cross.  However, both of the rows still have an
undetermined number of quads in them. 

Fig. 1 Example Surface Fig. 2  Example Surface with meshed
boundary and one row paved

Fig. 3  One row advanced with Un-
constrained Paving

Fig. 4 Two rows advanced with Un-
constrained Paving
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In Fig. 5, several additional rows have been advanced and 12 quadrilateral elements have
been formed where the various unconstrained rows have crossed. At this point, the un-
meshed portion of the surface has been subdivided into two sub-regions (sub-region A &
B).  It is important to note that both of these unmeshed regions are completely uncon-
strained.  For example, sub-region A is bound by five edges, however, none of these edges
has been meshed.  Sub-region A is free to be meshed with as many divisions as needed
along all of these edges.

Fig. 5 Additional rows advanced with
Unconstrained Paving

Fig. 6  Transition row inserted based
on large angle between two adjacent
rows

2.2 Transitioning Unconstrained Rows

Like traditional Paving, Unconstrained Paving has the ability to insert irregular nodes
(nodes with more or less than four adjacent quads) in order to transition and fit the shape of
the surface.  In traditional Paving, this is done by assigning states to the fronts based on an-
gles with adjacent fronts. Unconstrained Plastering is no different.  The start and end of an 
advanced unconstrained row likewise depends upon states and angles.  Fig. 6 shows the ad-
vancement of an additional row, which, because of angles is the advancement of two previ-
ously advanced rows. 

Fig. 7  Front A cannot be advanced
normally because Edge B is too short 

Fig. 8  Transition row inserted based
on front sizes 

Fig. 7 shows an additional case where rows must be advanced with care. Front A is the
next front to advance, however, Edge B is too short  even though angles indicate that the
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advancement of Front A should extend to Edge B.  In this case, Front A can be advanced as 
shows in Fig. 8. 

Unconstrained rows continue to advance as previously described.  Rows bend through the
mesh as required to maintain proper quadrilateral connectivity ensuring that all quadrilat-
eral elements created are of proper size.  In addition, Paver-like row smoothing and seam-
ing, along with the insertion of tucks and wedges [1] are additional operations that can be
performed on the unconstrained rows.  Fig. 9 illustrates the example surface and how it may
look after several more rows are advanced.  All edges on the unmeshed sub-regions A and 
B are less than two times the desired element size, and so we stop advancing fronts.  At this
point, it is time to resolve the unmeshed voids. 

Fig. 9 Unconstrained rows advanced
leaving only small unmeshed voids
and connecting tubes;  Quad are
shaded, connecting tubes are white.

Fig. 10 Unmeshed voids have been
meshed

2.3 Resolving Unmeshed Voids 

In general, the unmeshed sub-regions will be any general polygon, with any number of 
sides. It is assumed that each polygon will be convex.  If it is not convex, that would sug-
gest that an additional row needs to be advanced before resolving the unmeshed void.  It is 
also assumed that the size of the polygon is roughly one-to-two times the desired element 
size.  If it is larger than this, then additional unconstrained rows should be advanced until 
the remaining polygon is one-to-two times the desired element size. 

Also, note that the unmeshed region is completely unconstrained. Each of the edges on the
unmeshed polygons are connected to the boundary of the mesh through “connecting tubes”.
Connecting tubes are the white regions in Fig. 9 that have been crossed by only a single
row.  The edges of each polygon can be meshed with any number of edges, which will be
propagated back to the boundary through the connecting tubes.

At this point, the polygon is meshed with a template quad mesh similar to the templates
used to fill the voids during Paving [1].  The template inserted is based on the relative 
lengths of edges, and angles between edges.  In the general case, any convex polygon can
be meshed with midpoint subdivision [23].  Midpoint subdivision meshes convex polygons 
by adding a node at the centroid of the polygon and connecting it to nodes added at the cen-
ter of each polygon boundary edge.  The number of new quads formed is equal to the num-
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ber of points defining the polygon.  Although midpoint subdivision can always be used to
mesh the void, simpler templates are often possible. 

In Fig. 9, since sub-region B is already four-sided and is of proper size and shape, it can be
converted into a single quadrilateral element. However, sub-region A is meshed with mid-
point subdivision since it has five sides. The resulting mesh is illustrated in Fig. 10. 

Before Unconstrained Paving is finished, the connecting tubes must be examined for size.
In Fig. 10 Connecting Tube A is much too wide.  This can be fixed by advancing a few 
more rows until the proper size is obtained as shown in Fig. 11.  Traditional quadrilateral 
cleanup operations and smoothing can then be performed to finalize the mesh connectivity 
and quality as shown in Fig. 12. 

Fig. 11  Sizes in connecting tubes
have been resolved

Fig. 12  Final quad mesh after clean-
ing and smoothing

2.4 Unconstrained Paving with Multiple Surfaces 

In real world models, rarely is the geometry confined to a single surface.  For example, 
sheet metal parts in the auto industry representing automobile hoods often contain thou-
sands of surfaces.  Each of these surfaces must share nodes and element edges with its
neighboring surfaces across its boundary edges in order to ensure a conformal mesh. 

Typically, algorithms that do not pre-mesh the curves of surface before meshing have diffi-
culty ensuring a conformal mesh [17][18][19].  However, Unconstrained Paving can be ex-
tended to ensure conformal meshes between any number of surfaces.  The penalty, how-
ever, is that all of the surfaces must be meshed at the same time.  For example, Fig. 13 
illustrates four adjacent surfaces which require a conformal mesh. Fig. 14 shows the same
model with one unconstrained row advanced.  The row was advanced in three of the sur-
faces.  Fig. 15 shows several additional rows inserted and the formation of a tuck in surface
2.  Notice that curves which are shared by more than one surface are double-sided fronts 
advancing into both adjacent surfaces. 

After additional rows are advanced, Fig. 16 shows the small unmeshed voids and the con-
necting tubes.  It is important to note that when meshing multiple surfaces at once, the con-
necting tubes impose additional constraints on how the unmeshed voids can be meshed.
However, these constraints can always be satisfied with midpoint subdivision since this 
would split each edge in every connecting tube exactly once.  Fig. 17 shows what the mesh 
may look like before a final pass through cleanup and smoothing. 
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In the current research, Unconstrained Paving is used only as a thought experiment to help 
illustrate the concepts of Unconstrained Plastering.  While implementation of Uncon-
strained Paving may be beneficial current unstructured quadrilateral meshing techniques
satisfy FEA needs. For this reason the current research focuses implementation and proto-
typing efforts on the 3D Unconstrained Plastering problem. 

Fig. 13  Multiple adjacent surfaces re-
quiring a conformal mesh 

Fig. 14  An unconstrained row has
been advanced extending through 
multiple surfaces

Fig. 15 Additional rows are advanced
including a tuck

Fig. 16  Only small voids and con-
necting tubes remain 

Fig. 17  Unmeshed voids and connecting tubes are meshed

3 Unconstrained Plastering 

The basic principles of Unconstrained Paving extend to 3D as Unconstrained Plastering.
The basic algorithm is as follows and is described in the following sections.
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1. Start with a solid assembly with unmeshed volume boundaries. 
2. Define fronts, which initially are the surfaces of the volumes.
3. While the unmeshed voids of the solids are larger than twice the desired element

size:
a. Select a front to advance,
b. Based on sizes of fronts, and angles with adjacent fronts, determine

which adjacent fronts should be advanced with the current front. 
c. Advance the fronts 
d. Form unconstrained columns of hexahedra where 2 layers cross.
e. Form actual hexahedral elements where 3 layers cross.
f. Perform layer smoothing and seaming.
g. Insert tucks and wedges as needed.

4. Identify unmeshed voids, connecting tubes, and connecting webs. 
5. Define constraints between unmeshed voids through connecting tubes. 
6. Mesh the interior voids with either midpoint subdivision or T-Hex.
7. Sweep the connecting tubes between voids and out to the boundary. 
8. Split connecting webs as needed.
9. Smooth all nodes to improve element quality. 

3.1 Advancing Unconstrained Layers

The model in Fig. 18 will be used an example of Unconstrained Plastering.  Fig. 19 shows a 
single unconstrained hexahedral layer advanced.  The new surface displayed in Fig. 19 
represents the top of the layer of hexes which will be adjacent to the advanced surface. The
region between the boundary and the new surface represents an unconstrained layer of
hexahedra.  It is still unknown how many hexes will be in this layer, however, we do know 
that it will contain a single layer of hex elements. 

In Fig. 20, a second layer is advanced, which crosses the first layer advanced previously.
When two layers cross, a column of hexahedra is formed, however, the size and number of
hexahedra in this column will not be determined until additional hex layers cross this col-
umn.

Fig. 18  Unconstrained Plastering ex-
ample model 

Fig. 19  One unconstrained hex layer
has been advanced
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Fig. 20  When two layers cross, an 
unconstrained column of hexes is de-
fined 

Fig. 21  When three layers cross a
hexahedral element is defined 

In Fig. 21, a third layer is advanced, which crosses both of the previously defined layers. 
Where ever three layers cross, a hexahedral element is formed.  In Fig. 21, a single hex ele-
ment is defined in the lower left corner.  Note that until now, no final decisions have been
imposed on placement of hexahedra.  It is only when three orthogonal layers intersect that 
hex placement becomes finalized.

The process continues in Fig. 22, Fig. 23, and Fig. 24. Each time two layers cross a column
of hexahedra is defined. Each time a third layer cross a column, a single hexahedral ele-
ment is defined.  During this process, there will be transition layers inserted with logic simi-
lar to that described in section 2.2.  Layers are advanced until the unmeshed void is ap-
proximately twice the desired element size. 

Fig. 22  Additional layers are ad-
vanced

Fig. 23  Additional layers are ad-
vanced

Fig. 24 Additional layers are advanced until the unmeshed void is small 
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3.2 Front Processing Order 

A front to advance is a group of one or more adjacent surfaces which are advanced to-
gether.  The order that fronts are processed in Unconstrained Plastering is very important.
This is an area where additional research is required.  However, factors to consider when
choosing the next front to advance include:

1. Number of layers away from the boundary the front is.  Fronts closer to the 
boundary should be processed first. 

2. If the front is “complete” or not.  A complete front is a group of surfaces which
are completely surrounded by what are referred to as “ends” in Paving and Sub-
mapping[24][25].  For example, in Fig. 25, Surface 1 is complete since its bound-
ary is adjacent to a cylindrical face which is perpendicular to Surface 1.  In con-
trast, Surface 2 is incomplete since it is bounded on one of its loops by an “end”,
but is bound on its other loop with a “corner” [24].  The best way to proceed
would be advance Surface 1 several times until it becomes even with Surface 2, at
which the front from Surface 1 and Surface 2 would be combined and advanced
as a single front.

3. The size of the front.  Smaller fronts should probably be processed first. 
4. How much distance there is ahead of the front before a collision will occur.

Fronts with a lot of room to advance should probably be processed first.

Fig. 25  Surface 1 is a “complete” front, while Surface 2 is “incomplete” 

3.2 Resolving Unmeshed Voids

Like Unconstrained Paving, there will be unmeshed voids at the center of each volume be-
ing meshed.  The unmeshed voids can be easily identified because they are the regions in 
space that have not been crossed by any hex layers.  Fig. 26 illustrates the unmeshed void at
the center of the example model. In general, these voids define general polyhedra.  It is as-
sumed that these polyhedra are convex. If they are not convex, that suggests that an addi-
tional layer should be advanced before resolving the voids.  Although we have no theoreti-
cal basis to prove that advancing additional rows will always ensure a convex polyhedra, 
experience has shown that it does.  Likewise, it is assumed that all edges and faces of the
polyhedra are approximately twice the desired element size, or less.  If they are larger than
this, it suggests that an additional layer should be advanced. 

In addition to identifying the unmeshed voids, we must also identify the connecting tubes 
and connecting webs. Connecting tubes are those regions in space which have been crossed
by only a single hex layer as illustrated in Fig. 27.  In order to define a hex, three layers
must cross, which gives the connecting tubes two degrees of freedom, allowing them to be
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swept as a one-to-one sweep[22].  The direction of the sweep is perpendicular to the single
layers which already cross the connecting tube.  The number of layers in the sweep is the
same as the number of hex layers the connecting tube crosses between the unmeshed poly-
hedra and the boundary surface. 

Connecting webs are those regions in space which have been crossed by only two hex lay-
ers as illustrated in Fig. 28.  Connecting webs only have a single degree of freedom.  Essen-
tially, connecting webs represents a layer of hexahedra which will be split the same number 
of times that the adjacent connecting tubes are split.  In this example model, there is one
small connecting web section which is not attached to any connecting tubes or unmeshed 
void.  This will happen in locations where seaming has been performed, since seaming will 
often eliminate or split the unmeshed void.  In the example model, the front that was ad-
vanced from the front-right surface was seamed with the fronts extending from the hole. 

Fig. 26  The unmeshed void Fig. 27  The connecting tubes 

Fig. 28 The connecting webs 
After the unmeshed voids, connecting tubes, and connecting webs have been identified, the
unmeshed void is meshed using either midpoint subdivision[23], or T-Hex.  Midpoint sub-
division is the preferable method since it generates higher quality elements. To determine 
if midpoint subdivision is possible, a simple count of the number of curves connected to 
each vertex on the unmeshed polyhedra is done.  If there are any vertices which have four 
or more connected curves, then midpoint subdivision is not possible.  The unmeshed void 
in Fig. 26 can be meshed with midpoint subdivision as illustrated in Fig. 29.

Fig. 29  Midpoint subdivision of the
unmeshed void

Fig. 30 The connecting tubes are 
swept
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Fig. 31 The connecting webs are split Fig. 32  Final mesh using midpoint
subdivision of voids; connecting tubes
are shaded; connecting webs are
cross-hatched 

After the unmeshed void is meshed, the connecting tubes are swept as shown in Fig. 30 us-
ing the mesh from the unmeshed void as the source.  Finally, the connecting webs can be
split as illustrated in Fig. 31.  The final mesh on the example model, after some global 
smoothing, is shown in Fig. 32. The connecting tubes exposed to the boundary of the mesh 
are shaded dark and the exposed connecting webs are cross-hatched.

If the polyhedra cannot be meshed with midpoint subdivision, it is meshed with the T-Hex
template instead.  To do this, we first take each non-triangular polygon on each unmeshed
polyhedra and split it into triangles.  If the polygon being split is connected to other un-
meshed polyhedra through connecting tubes, we must be careful that the face is split the
same on both polyhedra so the sweeper can match them up through the connecting tubes. 
To ensure that they are split the same, a node can be added at the center of the face and tri-
angles are formed using each edge on the polygon and the newly created center node.  After 
each face is split into triangles, the polyhedra are meshed with tets.  Since we are assuming
that the unmeshed void is 1-2 times the desired element size, we would like to mesh these
polyhedra without introducing any nodes interior to the polyhedra.  Not putting any new
nodes in the polyhedra will also help with element quality since T-Hex meshes are worst 
when T-Hexing around a node surrounded completely by tet elements.  After the polyhedra
are tet meshed, each tet is split into four hexahedral elements using the T-Hex template 
shown in Fig. 33.  The T-Hex mesh for the polyhedra in the example problem is shown in 
Fig. 34 and the mesh on the connecting tubes in Fig. 35.  Since, in this example, we were 
meshing only a single solid, there were no constraints between multiple unmeshed voids. 
Therefore, the quadrilateral face on the top of the polyhedra was split into only two trian-
gles before tetrahedralization.  Fig. 36 shows the final mesh after some global smoothing.
The connecting tubes exposed to the boundary of the mesh are shaded dark and the exposed
connecting webs are cross-hatched. 

Fig. 33 T-Hex template Fig. 34  T-Hex on unmeshed void
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Fig. 35  The connecting tubes are 
swept with T-Hex mesh

Fig. 36  Final mesh using T-Hex on
voids; connecting tubes are shaded;
connecting webs are cross-hatched 

T-Hex has long been known as a guaranteed way to get an all hexahedral mesh on nearly 
any solid geometry.  However, the quality of the elements that result is rarely sufficient for 
most solver codes.  Critics of Unconstrained Plastering will point to the use of T-Hex on in-
terior voids as a major downfall of Unconstrained Plastering.  However, before that judg-
ment can be made, the following should be considered: 

1. T-Hex is only used when interior voids have a vertex with a valence of four or 
more.  In most cases, the interior voids can be meshed with midpoint subdivision. 

2. The worst quality hexahedra in T-Hex meshes are found adjacent to nodes which 
were completely surrounded by tets in the initial tet mesh.  This is because a tet 
mesh can have nodes with a valence of 15 or more, which results in the same
number of hexahedra when the T-Hex template is applied. This case should not 
appear during Unconstrained Plastering, since we assume that enough uncon-
strained layers have been advanced to make the interior voids small enough to be
tet meshed with no interior nodes.

3. The T-Hex looking elements that are swept to the boundary through connecting 
tubes are not poor in quality since a swept T-Quad mesh is much higher quality 
than a traditional T-Hex mesh.

4. Any poor quality hexahedra that are formed by Unconstrained Plastering will be
in the interior voids which should be on the deep interior of the volumes, with the
exception of thin parts which require only one or two layers of hexahedra through 
the thickness. 

3.4 Unconstrained Assembly Meshing

Even though Unconstrained Plastering does not seem capable of honoring existing bound-
ary quad meshes, it can be used to mesh assemblies of solids and still get a conformal mesh.
Like Unconstrained Paving, however, all of the volumes in the assembly must be meshed at 
once.  Fig. 37 illustrates a simple assembly model to be meshed.  Fig. 38 and Fig. 39 show
the same model after 3 unconstrained layers have been advanced.  Fig. 39 shows that the
unconstrained layers have been extended and advanced through both of the solids in the as-
sembly.  Like Unconstrained Paving, surfaces which are shared by both volumes will be-
have as double-sided fronts advancing into both volumes. 
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Fig. 37  Assembly model Fig. 38  Assembly model with three
advanced unconstrained plastering 
layers 

Fig. 39  Detail of Fig. 38 

3.5 Element Quality with Unconstrained Plastering 

Implementation of Unconstrained Plastering has not progressed far enough to make any
claims on element quality. However, like other advancing front algorithms, Unconstrained 
Plastering will have the tendency to put the highest quality element near the boundary.
Subsequent publications on Unconstrained Plastering will report element quality findings as 
the research matures.

One limitation that Unconstrained Plastering will have compared to Unconstrained Paving
is the lack of hexahedral cleanup operations.  Unlike quadrilateral cleanup, hexahedral
cleanup operations are limited due to the highly constrained nature of hexahedra [26][27].
As a result, Unconstrained Plastering will be required to create hexahedral topology that
will permit good element quality rather than relying on a post-processing cleanup step to fix
poor elements. 

4 Implementation Details

As stated earlier, implementation has begun on a full 3D implementation of Unconstrained 
Plastering. The authors have chosen to use a faceted surface based approach.  The basic al-
gorithm that is being followed is:
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1. Triangle mesh all of the boundary surfaces using an element size approximately 
equal to the desired hexahedral element size. 

2. Traverse through this triangle mesh to eliminate any unnecessary CAD artifacts
(i.e. small angles, slivers, etc.

3. Divide the triangles up into groups which form Surfaces or Fronts.  They are 
grouped together considering the original CAD topology, but also dihedral angles 
between the original CAD surfaces. 

4. For each volume in the assembly being meshed, form a “cell”.  Each cell has
three associated layer ids.  These initial cells get (UNDEFINED, UNDEFINED,
UNDEFINED) as their initial layer ids.

5. While any cell is larger than twice the desired element size: 
a. Choose a set of Surfaces to advance to form a new layer. 
b. Advance the triangle mesh on these surfaces into the volume.  A fac-

eted surface is created offset by the desired element size to the advanc-
ing surfaces. 

c. Form a new cell between each newly created surface its corresponding
front surface. This new Cell inherits the layer ids from the cell being
advanced into.  It is also assigned a new layer id which represents the
layer just created. 

d. Smooth and seam the newly advanced faceted surface with its
neighboring surfaces. 

6. Create constraints between the unmeshed voids through the connecting tubes.
7. Mesh each unmeshed void with either midpoint subdivision or T-Hex. 
8. Sweep the connecting tubes. 
9. Split the connecting webs as needed.
10. Send the entire mesh to a smoother for global smoothing.  Smoothing is needed

on curves and surfaces, in addition to the nodes on the interior of the volumes. 

5 Conclusions 

The concept of advancing unconstrained rows of quads and layers of hexahedra has been
introduced through the algorithms of Unconstrained Paving and Unconstrained Plastering.
The concept is most relevant with Unconstrained Plastering since it eliminates the problems
of resolving highly constrained unmeshed voids which is common with most other advanc-
ing front hexahedral meshing algorithms. 

The algorithms presented are able to mesh assembly models with conformal meshes with
the penalty that all of the volumes/surfaces in the model must be meshed at the same time.
Meshing all of the volumes in an assembly at once increases memory requirements since
the mesh on the entire assembly will need to be in the mesher’s internal datastructures at 
once, which are typically larger than mesh storage datastructures. 

Implementation of Unconstrained Plastering has begun and the authors are optimistic that it 
will be more successful than other free hex meshing algorithms.  However, additional re-
search is required before any claims will be made.
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Unconstrained Paving is also presented which is a potential improvement upon traditional 
advancing front quadrilateral meshing algorithms.  However, since the quadrilateral mesh-
ing problem already has several solutions, the priority of researching and implementing
Unconstrained Paving is lower than that of Unconstrained Plastering.
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